

Bildungs- und Kulturdepartement

Kantonsschule Alpenquai Luzern

Mathematics Basic Course

Written Matura Exam 2013

Teachers	Roman Oberholzer (roman.oberholzer@edulu.ch) Lukas Fischer (lukas.fischer@edulu.ch)
Classes	6Lc, 6Wc
Date of the exam	Friday, 24th of May, 2013
Time	180 minutes
Aids allowed	- "Mathematics Formulary", Adrian Wetzel - A dictionary (book, no electronic translator) - TI-30, Voyage 200 (or TI-92 Plus) without user manual
Instructions	 Importance is attached to a proper and clear representation. Write each exercise on a separate sheet of paper. All solutions must show the steps leading to the result. Put your personal number, your name and your class on every sheet of paper.
Maximum points per exercise	Exercise 1: 13 Exercise 2: 14 Exercise 3: 11 Exercise 4: 11.5 Total: 49.5
Points required for a grade of 6	42 points
Number of pages	5

Exercise 1 - Vector Geometry	а	b	С	d	е	f	Points
Exercise 1 - Vector Geometry	1.5	1.5	2	3.5	2	2.5	13

At the half of its height, a right pyramid ABCDS is intersected by a plane which is parallel to its base ABCD (see figure below). The resulting frustum of a pyramid (= Pyramiden-stumpf) is defined by the points A(-3/11/-3), B(5/3/-7), C(13/7/1), D(5/15/5), E(-2/4/4), F(2/0/2), G and H.

- a. Prove that the base ABCD of the pyramid is a square.
- b. Determine the Cartesian equation of the plane \mathcal{P}_{ABC} through the points A, B and C.
- c. Calculate the angle between the edge AE and the base ABCD.
- d. Find the coordinates of the points P on the line through the points C and E which have a distance of $3\sqrt{3}$ from point F.
- e. Determine the coordinates of the apex (= Spitze) S of the original pyramid.
- f. Calculate the distance of the point E from the plane \mathcal{P}_{ABC} .

Exercise 2 - Calculus a b c d e Points							
	Fyorciso 2 - Calculus	а	b	С	d	e	Points

2	4.5	1	2.5	4	14

The functions $f(x) = \frac{x^2 + a}{2x + b}$, a < 2 and b < 2, and $g(x) = e^{x-2}$ are given.

a. The graph of the function f intersects the graph of the function g at x = 2. Furthermore, the tangent to the graph of f at x = -1 is parallel to the line ℓ : 2x + y + 4 = 0. Find the values of a and b.

Solve the following exercises with the function $f(x) = \frac{x^2 + 1}{2x + 1}$.

- b. Determine the domain, the zeros, the stationary points, the inflection points and the asymptotes of the graph of f. *The graph of the function is not required.*
- c. Calculate the angle of intersection of the graphs of f and g at their intersection point S(2/?).
- d. Calculate the area enclosed by the graph of g, the tangent t to the graph of g at S and the x-axis.
- e. Starting at point D(-0.5/4), the rectangle ABCD is drawn into the coordinate system in such a way that its sides are parallel to the axes and point B lies on the graph of f below point C in the first quadrant (see figure at right). Determine the coordinates of B in order for the area of the rectangle to be a maximum. Calculate this maximum area as well.

d

е

С

Exercise 3 - Calculus

Written Matura Exam 2013

а

b

Mathematics Basic Course

Points

f

1 3 2.5 1.5 1.5 1 1						
	1	3	2.5	1.5	1.5	11

The figure shows the parabola $f(x) = (x-1)^2 + 1$, the line $\ell(x) = -x + 4$ and their intersection points P and Q. M is the low point of the parabola f, and t is the tangent to the graph of f at M.

- a. Calculate the area A_1 which is enclosed by the parabola f and the line ℓ .
- b. The parabola f, the line ℓ and the tangent t enclose the area A_2 to the right of M in the first quadrant. This area rotates about the x-axis. Calculate the volume of the resulting solid of revolution.
- c. Determine the equation of the line h which is parallel to the line ℓ and which encloses, together with the parabola f, an area of $\frac{4}{3}$.

- d. Prove that the triangle PMQ is a right-angled triangle with the right angle at Q.
- e. Determine the proportion between the areas of the triangle PMQ and the area A_1 (of exercise a.).
- f. A line k, with slope m and passing through the point Q, intersects the parabola f at point S for the second time. Prove that the x-coordinate of S equals the slope m of the line k.

Exercise 4 - Probability	a ₁	a_2	a ₃	b_1	b ₂	Points
--------------------------	----------------	-------	----------------	-------	-----------------------	--------

0.5	0.5	1	0.5	1	
b ₃	С	d	e ₁	e ₂	11 5
1	3	2	1	1	11.5

At the market, Mr Brown, together with his two daughters Mia and Audrey, and Ms Simpson, together with her three sons David, Brian and Nicholas are queuing in front of a fortune wheel. There are no other people waiting in the queue.

- a. How many different possibilities of queuing are there if
 - a₁. there are no restrictions;
 - a₂. the Brown family stands in front of the Simpson family;
 - a₃. all the children want to queue one after the other?

The fortune wheel is divided into twelve sectors of equal size, but different colors: two sectors are green, two are yellow, three are blue and five are red. If the wheel is spun (= gedreht) at random, one sector is indicated by stopping under the pointer.

- b. If the fortune wheel is spun four times, find the probability that
 - b₁. a red sector is indicated four times;
 - b₂. a red sector is indicated at the fourth spin for the first time;
 - b₃. a green, a blue, a yellow and a red sector are each indicated once.

A charity organization offers the following game: For a stake (= Einsatz) of 5 francs, the fortune wheel can be spun four times. If the indicated sector is red four times, the player wins a first prize (=Hauptpreis) of 100 francs. If there are exactly three red sectors indicated in four spins, the player gets a booby prize (= Trostpreis) of 5 francs. In all other cases, the player wins nothing.

- c. The game serves to generate donations for the charity organization which hopes to take 1 franc per game on average. Is the expectation of the organization correct or not? Justify your answer by a calculation.
- d. Ms Smith wants to take a first prize home for her daughter. How much money at least must she take with her to the market place in order to win at least one first prize with a probability of at least 95%?
- e. At a different market place, the fortune wheel mentioned above is spun seven times. Find the probability that
 - e₁. a blue sector is indicated exactly three times;
 - e2. a red sector is indicated at least five times.