Kantonsschule Alpenquai Luzern

Mathematics Basic Course

Written Matura Exam 2013

Teachers	Roman Oberholzer (roman.oberholzer@edulu.ch) Lukas Fischer (lukas.fischer@edulu.ch)
Classes	6Lc, 6Wc
Date of the exam	Friday, 24th of May, 2013
Time	180 minutes
Aids allowed	- "Mathematics Formulary", Adrian Wetzel - A dictionary (book, no electronic translator) - TI-30, Voyage 200 (or TI-92 Plus) without user manual
Instructions	- Importance is attached to a proper and clear representation. - Write each exercise on a separate sheet of paper. - All solutions must show the steps leading to the result. - Put your personal number, your name and your class on every sheet of paper.
Maximum points per exercise	Exercise 1: 13 Exercise 2: 14 Exercise 3: 11 Exercise 4: 11.5 Total: 49.5
Points required for a grade of 6	42 points
Number of pages	5

Exercise 1 - Vector Geometry	a	b	c	d	e	f	Points
	1.5	1.5	2	3.5	2	2.5	$\mathbf{1 3}$

At the half of its height, a right pyramid ABCDS is intersected by a plane which is parallel to its base ABCD (see figure below). The resulting frustum of a pyramid (= Pyramidenstumpf) is defined by the points $\mathrm{A}(-3 / 11 /-3), \mathrm{B}(5 / 3 /-7), \mathrm{C}(13 / 7 / 1), \mathrm{D}(5 / 15 / 5)$, $\mathrm{E}(-2 / 4 / 4), \mathrm{F}(2 / 0 / 2), \mathrm{G}$ and H .

a. Prove that the base ABCD of the pyramid is a square.
b. Determine the Cartesian equation of the plane $\mathscr{P}_{\mathrm{ABC}}$ through the points A, B and C.
c. Calculate the angle between the edge AE and the base ABCD .
d. Find the coordinates of the points P on the line through the points C and E which have a distance of $3 \sqrt{3}$ from point F.
e. Determine the coordinates of the apex (= Spitze) S of the original pyramid.
f. Calculate the distance of the point E from the plane $\mathscr{P}_{\mathrm{ABC}}$.

	2	4.5	1	2.5	4	$\mathbf{1 4}$

The functions $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}^{2}+\mathrm{a}}{2 \mathrm{x}+\mathrm{b}}, \mathrm{a}<2$ and $\mathrm{b}<2$, and $\mathrm{g}(\mathrm{x})=e^{\mathrm{x}-2}$ are given.
a. The graph of the function f intersects the graph of the function g at $x=2$. Furthermore, the tangent to the graph of f at $\mathrm{x}=-1$ is parallel to the line $\ell: 2 \mathrm{x}+\mathrm{y}+4=0$. Find the values of a and b.

Solve the following exercises with the function $f(x)=\frac{x^{2}+1}{2 x+1}$.
b. Determine the domain, the zeros, the stationary points, the inflection points and the asymptotes of the graph of f . The graph of the function is not required.
c. Calculate the angle of intersection of the graphs of f and g at their intersection point S(2/?).
d. Calculate the area enclosed by the graph of g, the tangent t to the graph of g at S and the x -axis.
e. Starting at point $\mathrm{D}(-0.5 / 4)$, the rectangle ABCD is drawn into the coordinate system in such a way that its sides are parallel to the axes and point B lies on the graph of f below point C in the first quadrant (see figure at right). Determine the coordinates of B in order for the area of the rectangle to be a maximum. Calculate this maximum area as well.

Exercise 3-Calculus	a	b	c	d	e	f	Points

The figure shows the parabola $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1)^{2}+1$, the line $\ell(\mathrm{x})=-\mathrm{x}+4$ and their intersection points P and $\mathrm{Q} . \mathrm{M}$ is the low point of the parabola f , and t is the tangent to the graph of f at M.
a. Calculate the area A_{1} which is enclosed by the parabola f and the line ℓ.
b. The parabola f, the line ℓ and the tangent t enclose the area A_{2} to the right of M in the first quadrant. This area rotates about the x axis. Calculate the volume of the resulting solid of revolution.
c. Determine the equation of the line h which is parallel to the line ℓ and which encloses, together with
 the parabola f , an area of $\frac{4}{3}$.
d. Prove that the triangle PMQ is a right-angled triangle with the right angle at Q .
e. Determine the proportion between the areas of the triangle PMQ and the area A_{1} (of exercise a.).
f. A line k, with slope m and passing through the point Q, intersects the parabola f at point S for the second time. Prove that the x-coordinate of S equals the slope m of the line k .

Exercise 4-Probability	a_{1}	a_{2}	a_{3}	b_{1}	b_{2}	Points

	0.5	0.5	1	0.5	1	
	$\mathrm{~b}_{3}$	c	d	e_{1}	e_{2}	$\mathbf{1 1 . 5}$
	1	3	2	1	1	

At the market, Mr Brown, together with his two daughters Mia and Audrey, and Ms Simpson, together with her three sons David, Brian and Nicholas are queuing in front of a fortune wheel. There are no other people waiting in the queue.
a. How many different possibilities of queuing are there if
a_{1}. there are no restrictions;
a_{2}. the Brown family stands in front of the Simpson family;
a_{3}. all the children want to queue one after the other?
The fortune wheel is divided into twelve sectors of equal size, but different colors: two sectors are green, two are yellow, three are blue and five are red. If the wheel is spun (= gedreht) at random, one sector is indicated by stopping under the pointer.
b. If the fortune wheel is spun four times, find the probability that
b_{1}. a red sector is indicated four times;
b_{2}. a red sector is indicated at the fourth spin for the first time;
b_{3}. a green, a blue, a yellow and a red sector are each indicated once.

A charity organization offers the following game: For a stake (= Einsatz) of 5 francs, the fortune wheel can be spun four times. If the indicated sector is red four times, the player wins a first prize (=Hauptpreis) of 100 francs. If there are exactly three red sectors indicated in four spins, the player gets a booby prize (= Trostpreis) of 5 francs. In all other cases, the player wins nothing.
c. The game serves to generate donations for the charity organization which hopes to take 1 franc per game on average. Is the expectation of the organization correct or not? Justify your answer by a calculation.
d. Ms Smith wants to take a first prize home for her daughter. How much money at least must she take with her to the market place in order to win at least one first prize with a probability of at least 95% ?
e. At a different market place, the fortune wheel mentioned above is spun seven times. Find the probability that
e_{1}. a blue sector is indicated exactly three times;
e_{2}. a red sector is indicated at least five times.

