Matura 2006
Mathematics
Basic Course

Obergymnasium

Time: 180 minutes

Only the four best solved exercises are valid for points. Each exercise gives a maximum of 10 points. Four complete answers, which must be worked out in detail, are required for a mark of 6 .

Aids: Formula Book "Mathematical Formulas for Economists", Springer
A dictionary (book or electronic translator)
TI-92 or Voyage 200 with the user manual
The use of the aids is to be declared clearly.

Exercise 1

The plane $\mathscr{P}_{1}: \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=10$ and the coordinate planes define a pyramid S_{1}. The pyramid is intersected by the plane \mathscr{P}_{2}, passing through the points $\mathrm{A}(0 / 0 / 4), \mathrm{B}(3 / 0 / 2)$ and $\mathrm{C}(2 / 1 / 2)$.
a) Find the traces (intersection lines with the coordinate planes) of the plane \mathscr{P}_{1}.
b) Sketch the pyramid in a coordinate system as shown in the figure.
c) Determine a Cartesian equation for the plane \mathscr{P}_{2} and a vector equation for the line in which the planes P_{1} and \mathscr{P}_{2} intersect.
d) Sketch also the plane \mathscr{P}_{2} together with the intersection line in the same coordinate system of exercise b). The plane \mathscr{P}_{2} and the coordinate planes define a pyramid S_{2}. Calculate the volume of the intersection solid $\mathrm{S}_{1} \cap \mathrm{~S}_{2}$.
e) Calculate the angle $\beta=\square(\mathrm{ABC})$.

Exercise 2

For each $a>2$, the function $f_{a}(x)=\frac{x}{a-2}\left(a-x^{2}\right)$ is given.
a) For $\mathrm{a}=3$, determine the symmetry, the zeros, the stationary points and the inflection points of the function $f_{a}(x)$, and sketch the graph.
b) In general: Find the coordinates of the maximum point H_{a} of the graph of f_{a}.
c) For what $\mathrm{a}>2$ is the maximum point H_{a} of exercise b) located at the lowest?
(If b) could not be solved, take $H_{a}\left(\sqrt{\frac{a}{3}} / \frac{a^{\frac{3}{2}}}{a-2}\right)$ to solve c)
d) For what $\mathrm{a}>2$ is the maximum point H_{a} closest to the origin?

Matura 2006

Exercise 3

A parabola $f(x)$ of the fourth degree is symmetrical with respect to the y-axis. The tangent of inflection in $A(1 /-2)$ has a slope of -4 .
a) Determine the function equation $y=f(x)$.
(If you could not solve exercise a), use the function $\mathrm{f}(\mathrm{x})=\frac{1}{32} \mathrm{x}^{4}-\frac{3}{4} \mathrm{x}^{2}+\frac{1}{2}$, which, in contrast to the function above, has a tangent of inflection of slope -2 in point $B(2 /-2)$, to solve the following exercises.)
b) The line ℓ passes through the minimum points of the graph of f . Calculate the area enclosed by the graph of f and the line ℓ.
c) The segment of the curve that lies between the positive zeros is rotated about the x-axis. Calculate the volume of the solid of revolution.
d) The two tangents of inflection and the connection line of the inflection points define a triangle. In what proportion does the graph of function f divide the area of this triangle?

Exercise 4

An employee of a travel agency knows from many years of experience that 30% of his customers book a vacation trip to the island F.
a) Find the probability that there are
a_{1}) exactly 15
a_{2}) at least 12
bookings for the island F among the next 50 reservations.
b) How many bookings must be carried out at least for the probability to be more than 99% that at least one reservation has the island F as its destination?
c) Because of the customers' booking habits, the travel agency organizes the vacation trip to the island F itself. For the flight, the travel agency charters a plane with 117 seats.
Because 8% of the passengers normally cancel their booking just a few days before the trip, the travel agency sold 125 tickets for the flight.
c_{1}) Find the probability that more than 117 persons show up at the airport.
C_{2}) What is the probability that there are still free seats on the flight?
c_{3}) Use the definition of the expected value to calculate how many of the 125 passengers can be expected to begin the trip?

Obergymnasium

Exercise 5

Solve the independent quizzes:
a) Under which angle do the graphs of the functions $f(x)=e^{4 x}$ and $g(x)=e^{-2 x}$ intersect?
b) Determine z so that the lines ℓ_{1} and ℓ_{2} intersect each other. Find then a vector equation of one of their angle bisectors:
$\ell_{1}:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{r}1 \\ -3 \\ 3\end{array}\right)+t \cdot\left(\begin{array}{r}2 \\ 1 \\ -2\end{array}\right) \quad \ell_{2}:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ z\end{array}\right)+s \cdot\left(\begin{array}{r}-2 \\ 3 \\ 6\end{array}\right)$
c) A box contains 8 white and 6 black numbered balls. If 5 balls are drawn at random without replacement, determine the probability that
c_{1}) exactly 2 balls are black.
C_{2}) at least 3 balls are white.

