

Kantonsschule Alpenquai Luzern

Written Matura Exam 2022

Subject	Mathematics Basic Course					
Teacher	Roman Oberholzer roman.oberholzer@edulu.ch					
Class	G18I					
Date of the exam	Friday, 20th of May, 2022					
Time	180 minutes					
Aids allowed	 "Mathematics Formulary", Adrian Wetzel A dictionary (book, no electronic translator) TI-30X Pro Multiview or MathPrint (no handbook) 					
Instructions	 Importance is attached to a proper and clear representation. Write each exercise on a separate sheet of paper. All solutions must show the steps leading to the result. Put your personal number, your name and your class on every sheet of paper. 					
Maximum points per exercise	Exercise 1: 8 Exercise 2: 12 Exercise 3: 13 Exercise 4: 12 Total: 45 38 points are required for a grade of 6.					
Number of pages	5 (including title page)					

1

Surname, First name	

Class

Number

Exercise 1	а	b	С	d	Points
Calculus I	0.5	4.5	0.5	2.5	8

We consider the function $f(x) = \frac{-x^2 + 5x - 4}{x}$ with the derivatives

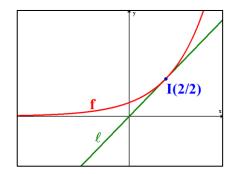
$$f'(x) = \frac{-x^2 + 4}{x^2}$$
 $f''(x) = \frac{-8}{x^3}$ $f'''(x) = \frac{24}{x^4}$

and the zeroes $Z_1(1/0)$ and $Z_2(4/0)$.

- a. Show that the given first derivative f' is correct by differentiating the function f once and simplifying it.
- b. Determine the domain, stationary points (maximum and minimum points), points of inflection and asymptotes of f and then draw the graph of the function f for $-10 \le x \le 10$. Units: 1 squares or 1cm.
- c. *Calculator allowed*: Determine the area of the region under the curve of f between its two zeroes Z_1 and Z_2 .
- d. The point P(u/v) lies on the graph of f in the first quadrant, and O(0/0) is the origin. Find the coordinates of point P in such a way that the right-angled triangle, with the hypotenuse OP and one side lying on the x-axis, has the largest possible area.

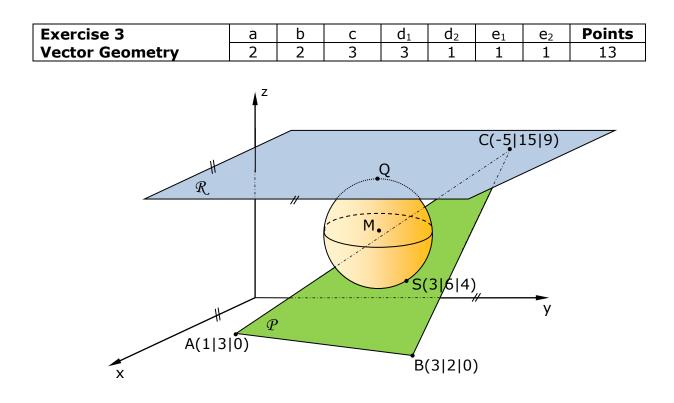
Exercise 2	а	b	С	d	е	f	Points
Calculus II	3.5	2	1.5	1	1.5	2.5	12

a. The graph of a third order parabola p passes through the origin and touches the x-axis at x = 6. The area under the graph of p in the first quadrant measures A = 12. Determine the function equation of the polynomial p.


Continue in the following exercises with the parabola $p(x) = x^3 - 6x^2 + 9x$.

b. The line ℓ passes through the origin O(0/0) and the inflection point I(2/2) of the parabola p (see diagram at the right). The

line ℓ and the parabola p enclose two re-


gions in the first quadrant. Using integral calculus, prove that these two areas are of equal size.

- A1 (2|2) P O(0|0) A2
- c. Show that the graph of the function $f(x) = 2 \cdot e^{\frac{x-2}{2}}$ has the line ℓ as its tangent line at the point I(2/2).

d. Prove that $F(x) = 4 \cdot e^{\frac{x-2}{2}} + c$ is an antiderivative of the function f.

- e. The graph of f, together with the negative x-axis and the positive y-axis, enclose a region which stretches to infinity to the left. Calculate the area of this region by using and evaluating the antiderivative given in exercise d.
- f. The graph of f, between x = 2 and x = b, with b > 2, rotates about the x-axis. The obtained solid of revolution has a volume of V = $4\pi \cdot (e^3 1)$. Find the value of b.

The diagram above is only a possible sketch of the following situation:

The points A, B and C define the plane \mathcal{P} . In addition, point C also lies in the plane \mathcal{R} ; z - 9 = 0 which is parallel to the xy-plane.

Furthermore, a sphere with center M is located between both planes \mathcal{P} and \mathcal{R} ; the sphere touches the plane \mathcal{P} in point S and the plane \mathcal{R} in point Q.

- a. Show that the plane P has the Cartesian equation P: x + 2y 2z 7 = 0.
- b. By what angle φ is plane P inclined (= geneigt) with respect to the xy-plane?
- c. The straight line ℓ_{CS} through points C and S intersects the xy-plane at point T. Is T closer to point A or to point B? Justify your answer by a calculation.
- d. The straight line ℓ_{AB} passes through the points A and B.
 - d₁. How far is point C away from the line ℓ_{AB} ?
 - d2. Determine the area of the triangle $\,\Delta_{_{ABC}}$.
- e. As described above, the sphere with center M touches the planes \mathcal{P} and \mathcal{R} .
 - e₁. Find the x- and y-coordinates of the center M(x/y/6) of the sphere.
 - e2. Determine the coordinates of the point Q at which the sphere touches the plane $\mathcal{R}.$

	a1	a ₂	a ₃	b ₁	b ₂	Points
Exercise 4	1	0.5	2	1	0.5	Points
Probability	b ₃	b4	b₅	С		10
	1	1	3	2		12

In a box there are 5 red, 3 white and 2 yellow balls. Balls of the same color are indistinguishable from each other.

- a. A child places all balls one after the other on a table. How many different arrangements are there,
 - a₁. if there are no further restrictions?
 - a₂. if all balls of the same color should be next to each other?
 - a₃. if two red balls are never allowed to lie next to each other?
- b. In a first game, the balls are randomly drawn with replacement. What is the probability
 - b₁. to draw exactly 2 yellow balls in 4 draws?
 - b2. not to draw a yellow ball in 10 draws?
 - b_3 . to draw at least 3 red balls in 5 draws?
 - b_4 . to draw the 7th white ball in the 10th draw?
 - b₅. How many draws at least do you have to make to have at least one yellow ball with at least 99% probability?
- c. In a second game, three balls are randomly selected simultaneously in one draw. For each white ball the player receives 2 Fr., for each different colored one he has to pay one franc. What average profit can the player expect per game?