

Bildungs- und Kulturdepartement Kantonsschule Alpenquai Luzern

Schriftliche Maturitätsprüfung 2024

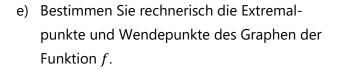
Fach	Mathematik Grundlagenfach								
Prüfende Lehrperson/en	Andreas Bolfing	andreas.bolfing@sluz.ch							
	Edoardo Sassone	edoardo.sassone@sluz.ch							
	Katrin Vock	katrin.vock@sluz.ch							
	Simon Wehrle	simon.wehrle@sluz.ch							
Klasse/n	G20a, G20c, G20d, G20f, C	520h							
Prüfungsdatum	Fr, 24.05.2024								
Prüfungsdauer	3 Stunden								
Erlaubte Hilfsmittel	 Formelsammlung «Formeln, Tabellen, Begriffe», DMK Taschenrechner TI-30X Pro (ohne Handbuch) 								
Anweisungen zur Lösung der Prüfung	 Jede Aufgabe soll auf werden und muss eine baren Lösungsweg ent Jeder Bogen ist mit de 	saubere Darstellung gelegt. einem neuen Bogen begonnen en vollständigen und nachvollzieh- thalten. em Namen zu beschriften. ittel ist klar anzugeben.							
Anzahl erreichbarer Punkte	Aufgabe 1: 12 Aufgabe 2: 9.5 Aufgabe 3: 11 Aufgabe 4: 11 Total: 43.5 Die Note 6 wird für minde 4 für mindestens 21.5 Pur	estens 38.5 Punkte erteilt, die Note akte.							

Name, Vorname	 Klasse	 Nummer

	a	b	С	d	е	f	g	Punkte
Aufgabe 1 - Analysis	1	1	1.5	1.5	3	2	2	12

Die Gleichung des Graphen der Funktion f in Abbildung 1 lautet $y = f(x) = -x^4 + 2x^2 + 8$.

- a) Zeigen Sie, dass die Punkte A(0|8) und B(2|0) auf dem Graphen der Funktion f liegen.
- b) Bestimmen Sie die Funktionsgleichung der Geraden g, deren Graph durch die Punkte A und B führt.
- c) Geben Sie die Stammfunktion von f an und berechnen Sie den Inhalt der schraffierten Fläche.
- d) Unter welchem Winkel schneiden sich die Graphen der Funktionen f und g im Punkt B? Den kleineren Winkel auf 2 Nachkommastellen genau angeben!



- f) Gemäss Abbildung 2 soll nun im Intervall [-2,2] vom Ursprung *O* aus ein recht-winkliges Dreieck eingezeichnet werden. Wie ist die Ecke *C* auf der x-Achse zu wählen, so dass der Flächeninhalt maximal wird?
- g) Der Graph einer Funktion $y = p(x) = ax^4 + bx^2 + c$ führt durch den Punkt A(0|8) und berührt die x-Achse im Punkt B(2|0). Bestimmen Sie die Werte der Parameter a, b und c.

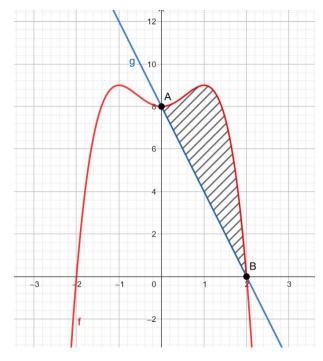
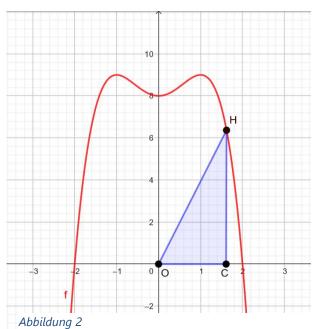


Abbildung 1



	а	b	С	d	е	Punkte
Aufgabe 2 - Analysis	1.5	2	3	1	2	9.5

<u>1.Teil:</u>

Die im I. Quadranten unterhalb der Kurve $y=g_t(x)=4-t\cdot\sqrt{x}$ liegende Fläche rotiert um die x-Achse und beschreibt so einen Rotationskörper.

- a) Setzen Sie t=2 und berechnen Sie das Volumen des beschriebenen Rotationskörpers.
- b) Für welchen Wert von t > 0 hat der Rotationskörper ein Volumen von $V = 24\pi$?

<u>2.Teil:</u>

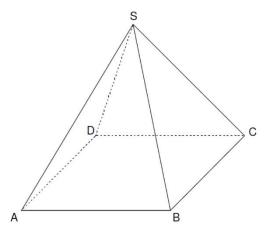
Für t > 0 ist durch $y = f_t(x) = (t + 2 - t \cdot x) \cdot e^x$ eine Funktion gegeben.

- c) Setzen Sie t=3 und zeigen Sie, dass $f_3'(x)=(2-3x)\cdot e^x$ und $f_3''(x)=(-3x-1)\cdot e^x$ die ersten beiden Ableitungen von $f_3(x)$ sind. Bestimmen Sie nun die Nullstellen, sowie Hoch- und Tiefpunkte von $f_3(x)$.
- d) Zeigen Sie, dass $F_t(x) = (2t + 2 t \cdot x) \cdot e^x + C$ Stammfunktion von $f_t(x)$ ist, Wie muss t gewählt werden, dass die Flächenbilanz unter der Kurve f_t zwischen x = 0 und x = 3 genau -6 beträgt?
- e) Zeigen Sie, dass die Kurve f_t die y-Achse für jeden Wert von t unter dem gleichen Winkel schneidet. Wie gross ist dieser Winkel?

	a	b	С	d	е	f	Punkte
Aufgabe 3 - Vektorgeometrie	2	1	2.5	2.5	1.5	1.5	11

Von einer vierseitigen Pyramide ABCDS kennt man von der quadratischen Grundfläche ABCD die Ecken A(12|10|0), B(9|7|12), C(-2|2|8).

a) Zeigen Sie, dass die Seiten \overline{AB} und \overline{BC} tatsächlich gleichlang und zueinander senkrecht sind.



- b) Bestimmen Sie die Koordinaten der Ecke D.
- c) Bestimmen Sie die Koordinatengleichung der Grundebene *E*, welche die Punkte *A*, *B*, *C* und *D* enthält.
- d) Bestimmen Sie eine Spitze S einer Pyramide so, dass der Vektor \overrightarrow{AS} senkrecht zur Grundfläche ist und das Volumen der Pyramide 972 Volumeneinheiten beträgt (eine Lösung genügt).
- e) Sei nun S*(17|–18|1) die Spitze einer anderen Pyramide ABCDS*. Berechnen Sie den Winkel zwischen der Kante $k = AS^*$ und der Grundebene E. Falls Sie c) nicht lösen konnten, verwenden Sie für E die Gleichung -8x + 16y + 2z + 1 = 0.
- f) Es treffen Sonnenstrahlen mit dem Richtungsvektor $\vec{v} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}$ auf die Pyramide. Auf welchen Punkt F auf der x-z-Ebene fällt der Schatten der Spitze S*?

	a	b	С	d	е	Punkte
Aufgabe 4 - Stochastik	4	1	2	1	3	11

- a) Bei einem Wurf mit zwei Würfeln werde die Augensumme als Ergebnis notiert.
 - i) Geben Sie einen Ergebnisraum Ω und seine Mächtigkeit an.
 - ii) Beschreiben Sie das folgende Ereignis als Teilmenge von Ω :
 - A = «Die Augensumme ist mindestens 10»
 - iii) Beschreiben Sie das Gegenereignis \bar{A} mit Worten.
 - iv) Berechnen Sie die Wahrscheinlichkeiten P(A) und $P(\bar{A})$.
- b) Fünf Würfel werden nebeneinander auf einen Tisch gelegt. Wenn du die Augenzahlen als Ziffern interpretierst, so bilden diese nebeneinander liegenden Würfel von links nach rechts gelesen eine fünfstellige Zahl.
 - i) Wie viele fünfstellige Zahlen lassen sich so bilden?
 - ii) Bei wie vielen dieser fünfstelligen Zahlen kommt die Ziffer 1 mindestens einmal vor?
- c) Drei Würfel werden gleichzeitig geworfen. Berechnen Sie die Wahrscheinlichkeiten folgender Ereignisse:
 - i) A = «Keine Sechs»
 - ii) B = «Genau eine Sechs»
 - iii) C = «Genau zweimal Sechs»
 - iv) D = «Alle drei Würfel zeigen sechs»
- d) Beim Würfelspiel «Pentagramm» wird mit 3 Würfeln gespielt. Fällt eine Fünf, so erhält der Spieler 5 CHF, bei 2 Fünfen erhält der 10 CHF und bei 3 Fünfen 30 CHF. Berechnen Sie den Erwartungswert der Zufallsgrösse «Auszahlung» bei diesem Spiel.
- e) Wie oft muss man drei Würfel mindestens gleichzeitig werfen, damit man mit mehr als 99% Wahrscheinlichkeit wenigstens einmal drei verschiedene Augenzahlen geworfen hat?

	a	b	С	d	е	f	g	Punkte
Lösung Aufgabe 1 - Analysis	1	1	1.5	1.5	3	2	2	12

a)
$$f(0) = -0^4 + 2 \cdot 0^2 + 8 = 8$$

 $f(2) = -2^4 + 2 \cdot 2^2 + 8 = -16 + 8 + 8 = 0$

b)
$$y = g(x) = -4x + 8$$

c)
$$F(x) = \frac{-x^5}{5} + \frac{2x^3}{3} + 8x$$
.

$$F = \frac{104}{15} = 6.9\overline{3}$$

d)

$$\alpha = 11.65^{\circ}$$

e) Extremalpunkte: T(0|8), H(-1|9), H(1|9)

Wendepunkte:
$$W(\sqrt{\frac{1}{3}} | \frac{77}{9}), W(-\sqrt{\frac{1}{3}} | \frac{77}{9})$$

f) Die Ecke C muss bei $x = -\sqrt{2}$ oder $x = \sqrt{2}$ gewählt werden.

$$a = \frac{1}{2}$$
, $b = -4$, $c = 8$

 a
 b
 c
 d
 e
 Punkte

 Lösung Aufgabe 2 - Analysis
 1.5
 2
 3
 1
 2
 9.5

a) V
$$= \frac{32}{3} \cdot \pi$$

$$\approx 33.51$$

b)
$$t = \frac{4}{3}$$

c)
$$t = 3$$
: $f_3(x) = (3 + 2 - 3 \cdot x) \cdot e^x = (5 - 3x)e^x$

Ableitungen:
$$f_3'(x) = (5 - 3x)' \cdot e^x + (5 - 3x) \cdot e^x$$

$$= -3 \cdot e^x + 5e^x - 3x \cdot e^x = 2e^x - 3x \cdot e^x$$

$$= (2 - 3x) e^x$$

$$f_3''(x) = (2e^x)' - (3x \cdot e^x)' = 2e^x - [(3x)' e^x + 3x(e^x)']$$

$$= 2e^x - 3 e^x - 3xe^x = -e^x - 3xe^x$$

$$= (-3x - 1) e^x \qquad qed$$

Nullstellen:

$$x = 5/3$$

Extremstellen: $H(\frac{2}{3} \mid 3e^{2/3})$

d)
$$F_t(x) = (2t+t-tx) \cdot e^x + C$$

 $F_t'(x) = (2t+t-tx)' \cdot e^x + (2t+t-tx) \cdot (e^x)'$
 $= -t \cdot e^x + (2t+t-tx) \cdot e^x$
 $= (-t+2t+2-tx) \cdot e^x$
 $= (t+2-tx) \cdot e^x$
 $= f_t(x)$ qed.

 $\underline{\mathsf{t}} = 2$

e)

 $\beta \approx 26.565^{\circ}$

 a
 b
 c
 d
 e
 f
 Punkte

 Lösung - Vektorgeometrie
 2
 1
 2.5
 2.5
 1.5
 1.5
 11

a) Zeige, dass die Seiten \overline{AB} und \overline{BC} zwei Seiten eines Quadrates sind.

$$\overrightarrow{AB} = \overrightarrow{r}_B - \overrightarrow{r}_A = \begin{pmatrix} 9 \\ 7 \\ 12 \end{pmatrix} - \begin{pmatrix} 12 \\ 10 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ -3 \\ 12 \end{pmatrix}
\overrightarrow{BC} = \overrightarrow{r}_C - \overrightarrow{r}_B = \begin{pmatrix} -2 \\ 2 \\ 8 \end{pmatrix} - \begin{pmatrix} 9 \\ 7 \\ 12 \end{pmatrix} = \begin{pmatrix} -11 \\ -5 \\ -4 \end{pmatrix}$$

Für ein Quadrat muss gelten: $|\overrightarrow{AB}| = |\overrightarrow{BC}|$ und der Winkel zwischen den beiden Vektoren muss 90° sein.

$$|\overrightarrow{AB}| = \sqrt{(-3)^2 + (-3)^2 + 12^2} = \sqrt{9 + 9 + 144} = \sqrt{162}$$

$$|\overrightarrow{BC}| = \sqrt{(-11)^2 + (-5)^2 + (-4)^2} = \sqrt{121 + 25 + 16} = \sqrt{162}$$

$$\overrightarrow{AB} \cdot \overrightarrow{BC} = \begin{pmatrix} -3 \\ -3 \\ 12 \end{pmatrix} \cdot \begin{pmatrix} -11 \\ -5 \\ -4 \end{pmatrix} = (-3) \cdot (-11) + (-3) \cdot (-5) + 12 \cdot (-4) = 33 + 15 - 48 = 0$$

b)
$$\vec{r}_D = \vec{r}_A + \overrightarrow{BC} = \begin{pmatrix} 12\\10\\0 \end{pmatrix} + \begin{pmatrix} -11\\-5\\-4 \end{pmatrix} = \begin{pmatrix} 1\\5\\-4 \end{pmatrix}$$
 oder
$$\vec{r}_D = \vec{r}_C - \overrightarrow{AB} = \begin{pmatrix} -2\\2\\8 \end{pmatrix} - \begin{pmatrix} -3\\-3\\12 \end{pmatrix} = \begin{pmatrix} 1\\5\\-4 \end{pmatrix}$$

- c) E: 4x 8y z + 32 = 0
- d) S=(4|26|2) oder S=(20|-6|-2)
- e) <u>71.57°</u>
- f) F(8; 0; -44)

a b c d e Punkte
Lösung Aufgabe 4 - Stochastik 4 1 2 1 3 11

- a) i) $\Omega = \{2,3,4,5,6,7,8,9,10,11,12\} \text{ d.h. } |\Omega| = 11$ bzw. $\Omega = \{(1,1), ..., (6,6)\} \text{ d.h. } |\Omega| = 36$
 - ii) $A = \{10,11,12\}$ bzw. $A = \{(6,4), (4,6), (5,5), (6,5), (5,6), (6,6)\}$
 - iii) \bar{A} = Die Augensumme ist höchstens 9.

iv)
$$P(A) = \frac{6}{36} = \frac{1}{6}$$
, weil $A = \{(6,4), (4,6), (5,5), (6,5), (5,6), (6,6)\}$ (1.5 Punkte) $P(\bar{A}) = 1 - P(A) = \frac{5}{6}$

b) i)
$$6^5 = \underline{7776}$$

ii) $6^5 - 5^5 = \underline{4651}$

c) i)
$$\left(\frac{5}{6}\right)^3 \approx \underline{0.5787}$$

ii)
$$\binom{3}{1} \cdot \left(\frac{5}{6}\right)^2 \cdot \frac{1}{6} \approx \underline{0.3472}$$

iii)
$$\binom{3}{1} \cdot \left(\frac{1}{6}\right)^2 \cdot \frac{5}{6} \approx \underline{0.0694}$$

iv)
$$\left(\frac{1}{6}\right)^3 \approx 0.0046$$

- d) $E \approx 2.5694$
- e) Es muss mindestens 6 mal gewürfelt werden.