

Bildungs- und Kulturdepartement **Kantonsschule Alpenquai Luzern**

Written Matura Exam 2024

Subject	Mathematics Basic Course
Teacher	Roman Oberholzer roman.oberholzer@sluz.ch
Class	G20k, G20l
Date of the exam	Friday, 24th of May, 2024
Time	180 minutes
Aids allowed	 "Mathematics Formulary", Adrian Wetzel A dictionary (book, no electronic translator) TI-30X Pro Multiview or MathPrint (no handbook)
Instructions	 Importance is attached to a proper and clear representation. Write each exercise on a separate sheet of paper. All solutions must show the steps leading to the result. Put your personal number, your name and your class on every sheet of paper.
Maximum points per exercise	Exercise 1: 11 Exercise 2: 12.5 Exercise 3: 11.5 Exercise 4: 12 Total: 47 42 points are required for a grade of 6.
	5 (including title page)

1

Exercise 1	а	b	С	d	Points
Calculus I	6	1	2	2	11

We consider the function $f(x) = \frac{2x^2 + 9x - 18}{x^2}$ with the first two derivatives

$$f'(x) = \frac{-9x + 36}{x^3} \qquad \qquad f''(x) = \frac{18x - 108}{x^4}$$

- a. Determine the domain, the zeroes, the stationary points (maximum and minimum points), the limits at the not-defined x-values and for $x\to\pm\infty$, and the asymptotes of f and then draw the graph of the function f for $-14\le x\le 15$. Sketch the asymptotes as well. *Units: 1 square per unit.*
- b. Show that the function $F(x) = 9 \cdot ln(x) + 2x + \frac{18}{x} + c$ is an antiderivative of f.
- c. Now, we consider the more general antiderivative of $F(x) = 9 \cdot \ln(x) + ax + \frac{b}{x}$, where c = 0 and x > 0. Find the values of a and b in such a way that the antiderivative F has the slope m = 8 at the point P(1|3).
- d. Determine the equation of the tangent from point O(0|0) at the graph of f in the first quadrant. Round the answer to three digits.

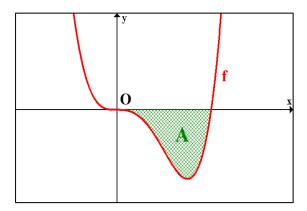
Exercise 2	a	b	С	d	Points
Calculus II	2	1	5	4.5	12.5

We consider the function

$$f(x) = \frac{1}{10} \cdot \left(x^4 - 4x^3\right)$$

as sketched in the graph at the right.

a. What is the size of the acute intersection angle between the graph of f and the x-axis at the positive zero of the graph of f?

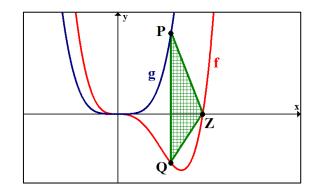


- b. The shaded area A between the graph of the function f and the x-axis in the 4^{th} quadrant rotates about the x-axis. Determine the volume of the obtained solid, without finding and evaluating the antiderivative.
- c. Now, we consider the tangent at the inflection point of the graph of f in the 4th quadrant. This tangent, together with the graph of f and the positive x-axis enclose a region. Calculate its area, without finding and evaluating the antiderivative.
- d. In this exercise, we consider the function

$$g(x) = \frac{1}{10} \cdot x^4$$

besides the function f.

Between the graphs of f and g, the triangle ΔPQZ is inscribed, where the side PQ is parallel to the y-axis. Point P lies on the graph of g, point



Q on the graph of f, and point Z is the zero of the graph of f on the positive x-axis.

Find the coordinates of point P in order for the area of the triangle ΔPQZ to be as large as possible.

Exercise 3	а	b	С	d	е	f	Points
Vector Geometry	1.5	1.5	1	3.5	2	2	11.5

The plane \mathcal{P} , passing through the points A(-1|4|2), B(1|0|2) and C(1|-4|4), and the line ℓ , passing through the points G(2|6|7) and H(-4|9|-2) are given.

- a. Determine the Cartesian equation of the plane \mathcal{P} .
- b. Calculate the angle ϕ between the plane $\mathcal P$ and the xy-plane.
- c. Find the equation of a line n, which intersects the line ℓ normally in point G.
- d. Find the coordinates of the point P on the y-axis in order for the angle $\sphericalangle(APB)$ to be equal to 90°.

Furthermore, the plane $\Re: 5x - 2y - 4z + 30 = 0$ is given.

- f. Show that the plane $\mathcal R$ is perpendicular to the plane $\mathcal P$, and that the plane $\mathcal R$ contains the line ℓ .
- g. Determine the line k of intersection between the plane $\mathcal P$ and $\mathcal R$. In what special position is the line k?

Exercise 4	а	b	С	d	е	f	g	Points
Probability	0.5	1.5	1	1.5	1	2.5	4	12

The entrance area of a large leisure park has 6 cash desks, no. 1 up to no. 6. Eight employees can operate these cash desks.

- a. In how many ways can the 8 employees be assigned to the 6 cash desks?
- b. In how many ways is this possible if employee Fritz and employee Susi can only work at the cash desk if they are both assigned (= eingeteilt) together, namely Fritz at his favorite cash desk no. 2 and Susi at her favorite cash desk no. 1?

Each cash desk is chosen with the same probability. 4 families arrive and each pays at a cash desk.

c. What is the probability that all the families choose different cash desks?

A game is offered to the 18 children (10 girls and 8 boys) present in the leisure park, in which a group of four is chosen at random.

d. What is the probability that there are exactly 2 boys and 2 girls in the group of four?

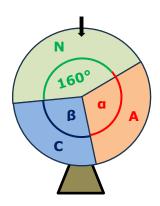
Those children who do not want to take part in the game can draw lottery tickets. Each lottery ticket has a probability of 0.05 for winning.

- e. What is the probability that a child who draws 10 lottery tickets will have exactly two winning lottery tickets?
- f. How many lottery tickets would a child have to draw at least in order to have at least one winning ticket with a probability of at least 0.99?

For the adults, the following game of chance is offered, in which admission cards for the leisure park can be won:

At the beginning of the game, a fair dice is rolled. If you get a "6", you can then spin a wheel of fortune with three sectors N, A and C.

If the pointer stops on sector C, you win a children's admission card worth 28 francs; if it stops on sector A, an adult admission card worth 36 francs is won. In sector N you go away emptyhanded.



The center angle of sector N measures 160°. The angles α and β of sectors A and C are chosen so that an average win of 3 francs per game can be expected.

g. Calculate the central angles of sectors A and C.

Bildungs- und Kulturdepartement Kantonsschule Alpenquai Luzern

Written Matura Exam 2024

Short Answers

Exercise 1	а	b	С	d	Points
Calculus I	6	1	2	2	11

a. domain: $ID = \left\{ x \in \mathbb{R} \ / \ x \neq 0 \right\} = \mathbb{R} \setminus \left\{ 0 \right\}$

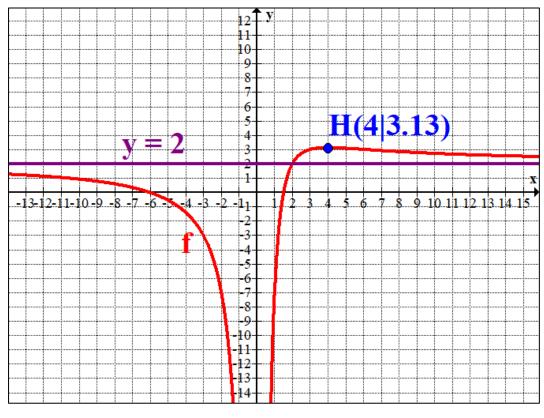
zeroes: $Z_1(-6 \mid 0), Z_2(1.5 \mid 0)$

stat. points: $H(4 \mid 3.13)$

behavior: $\underline{x = 0 \text{ is a vertical asymptote}}$ with $\lim_{x \to 0} \frac{2x^2 + 9x - 18}{x^2} = -\infty$

 $\lim_{x\to\pm\infty}f(x)=\lim_{x\to\pm\infty}\frac{2x^2+9x-18}{x^2}=2 \text{ (due to the same highest powers in num./denom.)}$

y = 2 is a horizontal asymptote



- b. Differentiate the given antiderivative to prove: F'(x) = f(x).
- c. a = 1, b = 2

d. *idea*: in point P, the first derivative (= slope) of the function f is the same as value of the slope, based on the triangle of slope

tangent: $\underline{t(x)} = 1.904x$

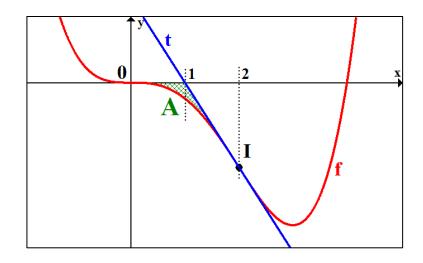
Exercise 2	а	b	С	d	Points
Calculus II	2	1	5	4.5	12.5

a.
$$\underline{\phi} = \underline{\underline{81.12^{\circ}}}$$

b.
$$\frac{16384\pi}{1575} = \frac{32.68}{1575}$$

c.
$$t(x) = -1.6x + 1.6$$

$$A=\frac{4}{\underline{25}}=\underline{\underline{0.16}}$$



d. The triangle $\triangle PQZ$ reaches its maximum area if the point P has the coordinates P(3/8.1).

Exercise 3	a	b	С	d	е	f	Points
Vector Geometry	1.5	1.5	1	3.5	2	2	11.5

a.
$$\mathcal{P}: 2x + y + 2z - 6 = 0$$

b.
$$\underline{\phi} = \underline{\underline{70.53^{\circ}}}$$

c. common point:
$$\underline{G(2|6|7)}$$
 $n: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 7 \end{pmatrix} + t \begin{pmatrix} x \\ z \end{pmatrix}$

d.
$$P_1(0|1|0)$$
; $P_2(0|3|0)$

$$e. \quad \vec{n}_{_{\mathcal{P}}} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \qquad \vec{n}_{_{\mathcal{R}}} = \begin{pmatrix} 5 \\ -2 \\ -4 \end{pmatrix} \qquad \text{with} \qquad \underline{\vec{n}_{_{\mathcal{P}}} \cdot \vec{n}_{_{\mathcal{R}}}} = \underline{0} \qquad \qquad \text{so } \underline{\mathcal{P} \perp \mathcal{R}}.$$

$$\begin{split} G \in \mathcal{R} \ : & \ 10 - 12 - 28 + 30 = 0 \ \to \ \underline{G \in \mathcal{R}} \\ H \in \mathcal{R} \ : & \ -20 - 18 + 8 + 30 = 0 \ \to \ \underline{H \in \mathcal{R}} \end{split}$$

If G and H are on the plane \mathcal{R}_{ι} than the line through these points lies also on the plane \mathcal{R}_{ι} .

- f. idea: Find two points lying on both planes; their connection line is then the line of intersection
 - x = 0: there is no solution for this case $\rightarrow \underline{\text{line k is parallel to the yz-plane}}$ or perpendicular to the x-axis

$$y = 0: S_1(-2 | 0 | 5)$$
 $z = 0: S_1(-2 | 0 | 10)$

line of intersection
$$k : \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 5 \end{pmatrix} + t \begin{pmatrix} 0 \\ 10 \\ -5 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 5 \end{pmatrix} + t \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$$

Exercise 4	а	b	С	d	е	f	g	Points
Probability	0.5	1.5	1	1.5	1.5	2	4	12

- a. 20'160
- b. <u>1080</u>

c.
$$p = 0.28$$

d.
$$p = \frac{7}{17} = \underline{0.41}$$

- e. P[exactly 2 winning tickets in 10 tickets] = 0.07
- f. at least 90 tickets
- g. The sector C has a quarter of the full angle of 360°, which means 90°, and the sector A has the remaining part, 360° 160° 90° = 110°.